Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Login

Register Now

It will take less than 1 minute to register for lifetime. Bonus Tip - We don't send OTP to your email id Make Sure to use your own email id for free books and giveaways

Master Python for Analytics Interviews

Topic – Master Python for Analytics Interviews

In this post, we will check all the resources that you would require to crack the Analytics interview’s Python round. You can very well cover the syllabus of Python in 7 days with The Data Monk, but this is for Analytics interviews. If you are targeting an SDE or DE role, then you need to grind Leetcode and DSA. We will also be covering these things in the future. But, this post is specifically for Analytics Interviews. Just try to follow the resources below.

Also, we cover most of the questions asked in the Python interview so that you can be a very strong candidate for any interview round.

The resources to Master Python for Analytics Interviews are split into 3 parts

1. Python Blogs on The Data Monk, we cover the most important concepts as well questions that are asked in the interviews
2. Python Most important concept videos – We have 40+ videos on YouTube freely available, these are not simple concepts or basic questions(like in other channels). We only concentrate on the most important concepts with respect to the interview questions
3. Python, Numpy and Pandas 200 Interview Questions in our master e-book bundle – This is the master set of questions, learn it and you will be able to solve more than 90% of questions in any Analytics interview round

Master Python for Analytics Interviews


We have already covered a lot of topics on Python Interview Questions on this website. Here, we will be putting in all the relevant and most important blogs.

Stag tuned !!


We have covered the most asked Python Interview concepts as well as questions asked in Analytics Interviews. But, we have put everything in our master e-book. Why??

Because Python alone can’t help you crack an Analytics interview, you need to learn SQL, Case Studies, Visualization tools, Big Data Technologies, and some of the niche concepts of Databases to stand a strong chance in clearing the interviews.

This e-book contains everything you need to become a full stack Analytics professional by solving questions across various topics like SQL, Python, ML, PowerBI, Big Data Technologies, etc.

This e-book is extremely helpful to freshers as well to people having 0-8 years of Analytics or non-analytics experience. You will never regret buying this ebook for the next few years.

Link to the 2200+ Interview Questions e-book

Python part in the above e-book :

– 200 Python Interview Questions
– 100 Pandas Interview Questions
– 100 Numpy Interview Questions
– 6 Machine Learning Algorithms in Python, completely explained in layman terms

How to purchase the e-book?

Please follow the easy steps mentioned in the post


  1. Sum, prod of digits, list in Python – https://youtu.be/DC36GRT1qpM
  2. Maximum and Minimum in Python – https://youtu.be/vx9SFpQ6BSg
  3. Factorial in Python – https://youtu.be/Mlff85OPkns
  4. Dictionary Questions in Python – https://youtu.be/temb0PRiECY
  5. Palindrome Number in Python – https://youtu.be/U4ynAsTYhgg
  6. Prime Number in Python – https://youtu.be/ilK2Lff-6rk
  7. Simple and Compound Interest in Python – https://youtu.be/NgFkf9xYXvg
  8. Separate Odd and Even elements from a List in Python – https://youtu.be/9ZuuM-BgVm4
  9. Rotate an array in Python – https://youtu.be/Bqwc-CdylIw
  10. Split an array and add the first part at the end in Python – https://youtu.be/uBHNQWvGSEU
  11. Fibonacci Series and its cases in Python – https://youtu.be/k6Ks_HOszZw
  12. Prime Number and its cases in Python  – https://youtu.be/nEYnkZqRd-A
  13. Fibonacci and cube sum in Python – https://youtu.be/WrAfsddNtSA
  14. Factorial and Armstrong in Python – https://youtu.be/BBDrTeDFhBw
  15. Sum and largest of an array in Python – https://youtu.be/Bze4QIqqX2k
  16. Largest element using 3 methods in Python – https://youtu.be/LQ3eVZeY1oE
  17. Matrix arithmetic operations in Python – https://youtu.be/0SdDUlooLlo
  18. Rotate array using reversal algorithm – https://youtu.be/gOpAYn4AeBs
  19. Reverse a list in Python – https://youtu.be/NdFNAK3OXjo
  20. Find the length of a list in Python 3 ways – https://youtu.be/Fb5rOUDiRsQ
  21. 3 ways to find the 2nd largest of the list – https://youtu.be/xXTK_pc-FbU
  22. 3 methods to check if element is present in the list – https://youtu.be/-pAkequiYSs
  23. Swap elements in the list – https://youtu.be/ArveDnHiXRU
  24. Remainder of array multiplication divided by a number n – https://youtu.be/kymhbILz40A
  25. Swap elements in Python – https://youtu.be/goij4fQ-u-k
  26. Reverse a given list in Python – https://youtu.be/PznKVOozTtU
  27. Break a list into chunks of size N in Python – https://youtu.be/lLwjCZ8Fn90
  28. Cloning or copying of list in python – https://youtu.be/k7qv1rczb-Y
  29. Count of element in list in Python – https://youtu.be/GX4Ue1XXMac
  30. Find tuple indices from other tuple list – https://youtu.be/rO9TdXIGRYI
  31. Flatten tuple of list into tuple in Python – https://youtu.be/d6DBr_EmHnE
  32. Removing elements from lists in Python – https://youtu.be/6OUczhicFhg
  33. Print duplicates from a list in Python – https://youtu.be/IA7tCtgONZY
  34. Sort by frequency of 2nd element in tuple list – https://youtu.be/FUR9gX0vBU8
  35. Sort values of first list using second list – https://youtu.be/h2bBt0IESIA
  36. Sum of digits in list in Python – https://youtu.be/Km5yVwUwRy0
  37. Time Conversion in Python – https://youtu.be/EIOkw14vt9k
  38. Current Date and Time in Python  – https://youtu.be/ioYJwr0HtlY
  39. Time Conversion in Python  – https://youtu.be/cId5aanmVt8
  40. Selection Sort in simple terms in Python – https://youtu.be/TdNq2TfGHOo
  41. Linear and Binary Search in simple terms – https://youtu.be/ivqX3Pf6i34
  42. Insertion Sort in simple terms Python – https://youtu.be/BQKAjW9byp0


  1. Top 20 Pandas Functions asked in any interview – https://youtu.be/B_LA2sM42ls
  2. Complete Pandas Tutorial – https://youtu.be/AjFx9HoO264
  3. Importing filed in Pandas – https://youtu.be/6xJwLmLUHIY
  4. Apply, Map in Pandas – https://youtu.be/sG6XavjjvNA
  5. Apply Map – https://youtu.be/er9psyc2bv4
  6. Lambda Functions – https://youtu.be/898BerR28EE
  7. Slicing Data Frames – https://youtu.be/QPIAGBLMM7A
  8. Treating Missing Values – https://youtu.be/RCZ1JsTn_lI
  9. Pivot Table in Pandas – https://youtu.be/c-Hp6Lh6aMY
  10. Combining Data Frame – https://youtu.be/gLKQVivpXwo
  11. Group by  – https://youtu.be/pFii_t3DOII
  12. Stacking – https://youtu.be/n_SlDSnaqQ4
  13. Type Conversion – https://youtu.be/AN4dPVeY7r8


  1. Introduction to Machine Learning and AI – https://youtu.be/MTHEIQk5zwI
  2. Introduction to Linear and Logistic Regression in Machine Learning – https://youtu.be/IqBAm9nJLng
  3. Introduction to Decision Tree in Machine Learning – https://youtu.be/7PrDWwM0dv8
  4. Python Basics Revision in 30 minutes – https://youtu.be/0IRMAXTgZIw
  5. EDA in Machine Learning – https://youtu.be/zw5AruehIZo
  6. Linear Regression Theory and Code in 30 minutes (Python) – https://youtu.be/VzeAxFkYuf8
  7. Logistic Regression Theory and Code in 30 minutes (Python) – https://youtu.be/l4Fyfmm1ry0
  8. Decision Tree Code and Theory in 30 minutes – https://youtu.be/1Ev35ZZh18U
  9. Complete LSTM model with Stock price prediction at 98% accuracy – Code and Theory – https://youtu.be/R97p_Y9U6Io
  10. Random Forest Adaboost Theory and Code in Python – https://youtu.be/3NhH8h0_kZk
  11. Complete Support Vector Machine Algorithm, Theory and Code in Python – https://youtu.be/im05sGaEbCU
  12. XGBoost Theory and Code in 30 mins in Python – https://youtu.be/0pHEFxVawks
  13. K Nearest Neighbour KNN code and theory in 30 mins – https://youtu.be/0NZakEXw8n8
  14. Naive Bayes Theory and Code in 30 minutes in Python – https://youtu.be/KGP0NZ-4tHU
  15. K-Mean, Hierarchical and DBSCAN Theory and Code in Python – https://youtu.be/iT5W8i-JOpE
  16. Association (Apriori, ECLAT, FP-Growth) Theory and Code in Python – https://youtu.be/7Uk-cpOEecI
  17. Dimension Reduction Theory and Code in Python – https://youtu.be/HDIWTZnl3hU
  18. Regression case study for Data Science Interview – https://youtu.be/7pzcgpCr6Ps

About TheDataMonkGrand Master

I am the Co-Founder of The Data Monk. I have a total of 6+ years of analytics experience 3+ years at Mu Sigma 2 years at OYO 1 year and counting at The Data Monk I am an active trader and a logically sarcastic idiot :)

Follow Me