Numpy is one of the basic and most used packages in Python. It is mostly used for scientific computing.

Most important Data Type in Numpy is Array.*import numpy as np*

And you have installed the numpy package in your system. Now, check the important and basic functions present in Numpy package to play around your dataset.**1. Import numpy**

import numpy as n**2. Create an array in python**

arr = np.array([0,1,2,3,45,6])

print(arr)

[ 0 1 2 3 45 6]

**3. Create a two dimensional array**

arr2 = np.array([[1,2,3],[5,6,7]])

print(arr2.shape)

(2, 3)

**4. Create an array of all ones of 3 rows and 4 columns**

one = np.ones((3,4))

print(one)

[[1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.]]

**5. Create an array with all zeros in 3 rows and and 4 columns**

zero = np.zeros((3,4)) print(zero) [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]

**6. Create an array with random values for 3 rows and 4 columns**

rand = np.random.random((3,4))

print(rand)

[[0.15340682 0.57965139 0.15538918 0.35086011] [0.35453516 0.96230823 0.49873964 0.022157 ] [0.35144323 0.42548206 0.96434164 0.67721939]]

â€‹**7. Statistical functions available in Numpya. Minb. Maxc. Meand. Mediane. Standard Deviation**

First of all, we will be creating a series of random numbers using np.random.normal function which gives you the flexibility to choose the range in which you want to have your random numbers, irony is that you can restrict the randomness of your random number đŸ˜›

import numpy as np stat = np.random.normal(8,1.5,10) print(stat) [8.84371443 7.7014931 6.72789277 5.73700496 8.46005265 9.08922936 8.71789028 6.84561345 8.20465228 7.26850749]

There are three parameters in the function separated by a comma.

8 is the base value

1.5 is the range you which you are providing to the function i.e. the values will vary in the range 6.5 to 9.5

10 is the number of random values

**8. Now let’s get the min, max, mean, standard deviation from “stat”**

print(min(stat))

5.737004956818833

print(max(stat))

9.089229356076414

print(np.mean(stat))

7.759605075083963

print(np.std(stat))

1.0385313768435045

**9. Matrix multiplication in numpy**

x = [[1,2],[4,5]] y = [[6,7],[8,9]] z = np.matmul(x,y) print(z) [[22 25] [64 73]]